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Fig. 1: We introduce FuSe, an approach that enables finetuning large image-based pre-trained generalist policies, including vision-language-action
(VLA) models, on heterogeneous robot sensor modalities, such as touch or audio, for which large datasets are not readily available, while leveraging
natural language as a common cross-modal grounding. Our finetuning recipe enables challenging multimodal and cross-modal prompting tasks
in partially-observable scenes and is able to generate zero-shot descriptions of objects it interacts with.

Abstract— Interacting with the world is a multi-sensory expe-
rience: achieving effective general-purpose interaction requires
making use of all available modalities – including vision,
touch, and audio – to fill in gaps from partial observation.
For example, when vision is occluded reaching into a bag, a
robot should rely on its senses of touch and sound. However,
state-of-the-art generalist robot policies are typically trained
on large datasets to predict robot actions solely from visual
and proprioceptive observations. In this work, we propose
FuSe, a novel approach that enables finetuning visuomotor
generalist policies on heterogeneous sensor modalities for which
large datasets are not readily available by leveraging natural
language as a common cross-modal grounding. We combine a
multimodal contrastive loss with a sensory-grounded language
generation loss to encode high-level semantics. In the context
of robot manipulation, we show that FuSe enables performing
challenging tasks that require reasoning jointly over modalities
such as vision, touch, and sound in a zero-shot setting, such as
multimodal prompting, compositional cross-modal prompting,
and descriptions of objects it interacts with. We show that the
same recipe is applicable to widely different generalist policies,
including both diffusion-based generalist policies and large
vision-language-action (VLA) models. Extensive experiments in
the real world show that FuSe is able to increase success rates
by over 20% compared to all considered baselines.
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I. INTRODUCTION

Intelligent beings have the ability to seamlessly combine
a variety of sensory feedback that allows them to effectively
interact with physical the world. Beyond vision, humans rely
on the touch and audio feedback to manipulate objects [1],
[2], as they provide rich complementary information about
object properties, especially when visual information alone
might be insufficient to complete the task, such as when
locating keys inside a bag [3]. This stands in contrast to state-
of-the-art robot policies [4]–[8], often denoted as generalist,
that absorb knowledge from a vast amount of robotics
datasets [9]–[13], but rely solely on visual and proprioceptive
observations to perform a wide range of tasks.

The main factor limiting development of generalist robot
policies based on truly hetereogeneous data is that, while
recent robotics datasets contain an abundance of vision and
proprioception data, only a small minority of them contain
other sources of sensory data [14]–[16]. This raises the
question: how can we retain the generalization capabilities
of generalist robot policies pre-trained on large amounts
of data, while connecting their semantic knowledge with
heterogeneous sensory data, for which large datasets are not
readily available?

Prior studies show that natural language can act as com-
mon grounding across different models, even when they are
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trained on minimally overlapping data domains [17]–[22].
Moreover, relating human language to multimodal percepts
and actions naturally enables indexing goals using open-
vocabulary multimodal queries. Nonetheless, incorporating
multiple sensing modalities, such as touch or audio, into
robotic policies has thus far proved challenging. This dif-
ficulty arises from factors such as data scarcity, the tendency
of prior work to focus on single-sensor approaches, and the
lack of joint reasoning over multimodal percepts and low-
level robotic actions [2], [3], [14]–[16], [23]–[26].

In this work, we address these challenges and present a
recipe to finetune generalist robot policies on smaller-scale
datasets comprising modalities complementary to vision,
such as touch and sound, and demonstrate that novel capabil-
ities and cross-modal semantic understanding are unlocked
through this multimodal finetuning procedure.

Our key insight is to use language as a bridge across all
modalities. By doing so, we enable our policy to perform
challenging manipulation tasks that require reasoning jointly
over vision, touch, and sound in a zero-shot setting, enabling
multimodal prompting, generation of object descriptions
upon interaction, and compositional cross-modal prompting.
In practice, our policy can successfully fulfill challenging
task instructions, such as “pick the red object that feels soft
and makes a loud sound”, “describe how the grasped object
feels like”, “pick the object that has the same color as the
button that plays piano”.

Our results show that our policies leveraging a pre-trained
generalist robot policy finetuned on multimodal data consis-
tently outperform baselines finetuned only on vision data,
or trained from scratch on heterogeneous sensory data. We
find that the same general recipe is applicable to generalist
policies with widely different architectures, such as Octo [4],
a large transformer-based policy trained on the Open X-
Embodiment [9] (OXE) dataset, and a 3B VLA with a
PaliGemma [27] vision-language-model VLM backbone.

For our experiments, we leverage a dataset consisting
of 27K robot trajectories we collected that contains vision,
touch, audio, proprioception, and language instructions on
three different real-world robotic manipulation tasks. To the
best of our knowledge, this dataset is the first of its kind
that also contains robot action data, which is key to perform
physically grounded multimodal tasks. We open-source all
of our data, code and models to support future research in
this area.

II. RELATED WORK

A. Generalist Robot Policies

Generalist robot policies have shown promise of con-
suming diverse large-scale data to unlock generalization in
robotic tasks [4]–[8], [22], [28]. These policies leverage large
robot dataset collections [9], [10], [29] that have recently
been made available to the community, and are most often
queried with language instructions defining the task. In some
instances, robot actions are directly fused with a vision-
language model (VLM) backbone [5], [7], [22], improving
generalization due to pre-training on internet-scale data.

However, while some of the recently introduced mod-
els [4], [8] can naturally process flexible observations, the
scarcity of datasets that include other sensory modalities,
such as touch or audio, limits their capabilities primarily
to visual inputs. In contrast, our work shows how such
capabilities can be enhanced with a much smaller amount of
robotic data containing additional heterogeneous modalities
to allow jointly reasoning over modalities such as vision,
touch, and sound in a zero-shot setting.

B. Multimodal Reasoning in Robotics

Multimodality aims to exploit complementarity across
different sensors to enhance the capabilities of autonomous
robot policies. Its advantages have repeatedly been shown in
the literature, resulting either in improved performance [2],
[3], [3], [24], [30]–[39], generalization [31], [40], or robust-
ness [37], [41].

Despite this evidence, only a minority of works employ
sensor modalities in addition to vision and proprioception.
This is reflected in the robotics datasets made available
to the community. For example, the largest collection of
robotics dataset, Open X-Embodiment [9] (OXE), does not
include touch or sound as part of their default sensory modal-
ities. Some notable exceptions include recent works [14],
[23], [42] that try to align vision, language, and touch for
perception tasks. However, most of the available datasets
made available through these works do not include robot
actions, limiting their applicability for policy training and
to perform physically grounded multimodal tasks. Here, we
first introduce a multi-task dataset that includes vision, touch,
audio, inertial measurements, proprioception, as well as robot
actions and language instructions. We then leverage this
dataset to finetune large generalist robot models, unlocking
novel multimodal reasoning capabilities.

III. FUSE FINETUNING

State-of-the-art generalist robot policies typically rely on
vision, language, and robot actions as training modalities,
which limits their applicability on partially-observable scenes
where tasks cannot be completed solely through vision.
We propose a recipe, FuSe, to Fuse heterogeneous Sensory
data into generalist robot policies. Specifically, we finetune
these policies to extend their semantic understanding to
include additional sensing modalities, such as touch and
sound, while retaining their pre-trained knowledge. Our key
observation is that by adding two auxiliary losses, which
contrast heterogeneous observations with natural language
and generate language from observations, we are able to link
a variety of sensing modalities with the semantic knowledge
of pre-trained generalist robot policies. We use Octo [4], a
transformer-based pre-trained policy, as the backbone model
for the main experiments in this paper, but we also show
that the same finetuning recipe is applicable to a 3B vision-
language-action model based on a PaliGemma [27] VLM
backbone. The training architecture is depicted in Figure 2.

This finetuning strategy introduces three main challenges,
namely: (i) the weights of the feature extractors (encoders)
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Fig. 2: Architecture: We finetune pre-trained generalist robot policies by tokenizing all heteregoneous sensing modalities and passing them though a
pre-trained transformer backbone. Crucially, we apply two auxiliary losses that help connect the semantic knowledge of pre-trained generalist policies with
new heterogeneous modalities, such as touch and audio. Concretely, we apply both a contrastive loss that aims to maximize mutual information between
different views and semantics of the same scene, and a language generation loss that predicts high-level semantics for each modality combination.

for the new modalities generally need to be effectively
learned from a small dataset; (ii) the finetuned model em-
pirically tends to predominantly rely on the pre-training
modalities, ignoring the new sensors; (iii) novel cross-modal
prompting capabilities rely on modality specific annotations,
e.g., “the object feels soft and squishy”. We detail below the
modifications required to address all of these challenges.

Tactile encoder. To account for the small finetuning
dataset size, we use a pre-trained tactile encoder and finetune
it together with the backbone Octo architecture. In particular,
we use the TVL encoder [14], which was pre-trained via
pairwise contrastive learning across vision, language, and
tactile modalities. We feed all tactile images (two in our
robot setup) separately through the same TVL encoder.

Audio encoder. As the raw audio waveform is highly
dimensional and noisy, we process the audio data to build
a spectrogram as reported in previous work [3], [43]–[45].
The spectrogram is then treated as a regular image and fed
through a ResNet26 encoder [46].

Auxiliary losses. As aforementioned, a naı̈ve way of
simply finetuning pre-trained generalist policies with a mean-
square-error (MSE) imitation loss LBC conditioned on ad-
ditional sensor data, leads to the policy over-relying on its
pretraining modalities and ignoring the new modalities. We
overcome this limitation by introducing two additional losses
that fully leverage multimodality and connect the semantic
knowledge of pre-trained generalist policies with unseen
sensor modalities:

1) Multimodal Contrastive Loss: We introduce a loss that
aims to align the various language instructions with the

observations via CLIP-style contrastive learning [47].
At a high level, it aims to maximize mutual information
between different modalities and semantics of the same
scene. Concretely, we build an observation embed-
ding by feeding all modalities once more through
the transformer and combining them via a multi-head
attention layer. We then compute a CLIP loss for
each possible instruction resulting from combining the
different available modalities. These losses are finally
averaged to form a combined multimodal contrastive
loss Lcontrast.

2) Multimodal Generative Loss: We design a generative
network that functions as an add-on head to the back-
bone model. In practice, for each possible modality
combination, we build an observation embedding as
above, and feed it through the generative head. Then,
we compute an auxiliary cross-entropy loss Lgen by
comparing the head output with the appropriate lan-
guage instruction. We use a single transformer as the
generative head for all possible modality combinations,
with modality tokens to distinguish between input
modalities.

The final loss is given by L = LBC+βLgen+λLcontrast,
where the contrastive loss and the generative loss are
summed to the MSE action loss during training.

Language Rephrasing. As discussed previously, cross-
modal prompting capabilities require modality specific anno-
tations, e.g., “the object feels squishy and looks round”. We
annotate the robot trajectories we collect with heterogeneous
sensors with after-the-fact language annotations. We annotate
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Fig. 3: Visualization of the various sensor modalities on our WidowX robot.

these trajectories with templated language that enables us to
create augmentations based on multiple sensor inputs, “the
object feels squishy and is red” or “the object feels metallic
and sounds clinking”. However, at test time we would like
users to instruct the policy with free-form language. There-
fore, to increase the range of possible input instructions, as
well as the representation power of the generative network,
we augment the instructions in the dataset by diversifying
them through a large language model. Specifically, we query
ChatGPT [48] for rephrased templates that preserve the
original semantic meaning.

Implementation Details. We train all models for 50,000
steps on a v5e-128 TPU pod with a batch size of 1024.
We use a cosine learning rate scheduler with 2000 warmup
steps, and a peak value of 3× 10−4. We resize third-person
RGB images to 256x256, wrist RGB images to 128x128,
and tactile images to 224x224. We create spectrograms of
size 128x128. Our language rephrasing buffer contains 20
different templates for each possible modality combination.
We set β = 1 and λ = 1.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of FuSe to
finetune pre-trained generalist robot policies to include addi-
tional sensor modalities, while linking them to the policy’s
pre-trained semantic knowledge. We answer the following
questions:

1) Does FuSe help perform multimodal prompting
tasks in a zero-shot manner in partially observable
environments? (Section IV-C)

2) Does FuSe enable multimodal prompting to dis-
criminate between objects that would otherwise be
ambiguously described through a single modality?
(Section IV-D)

3) Can the multimodal capabilities of FuSe be ex-
ploited for compositional reasoning tasks? (Sec-
tion IV-E)

4) Are the proposed cross-modal language grounding
losses necessary to achieve high performance when
finetuning FuSe? (Section IV-F)

5) Is FuSe applicable to different generalist robot
policies? (Section IV-G)

(a) Objects used for evaluation purposes. (b) Objects included in the training data.

Fig. 4: Visualization of objects for real-world experiments, including objects
seen (a) and unseen (b) in the multimodal finetuning dataset. Objects differ
in shape, appearance, material, hardness, and surface properties.

A. Real Robot Setup and Training Data

All our experiments feature a WidowX 250 6-DoF robot
arm. The robot is controlled via delta end-effector position
commands at a frequency of 5 Hz. The system is equipped
with a third-person view RGB camera, a wrist RGB camera,
two DIGIT tactile sensors at the gripper fingers, a standard
microphone, and a 9-DoF IMU. We present experiments on
three different tasks, which are described below. For the
grasping scenarios, we evaluate on the 24 objects present
in the training dataset, along with 32 unseen test objects; for
the button tasks, we evaluate on the six buttons and 13 of
the 18 distractors/grasping targets seen in the training dataset,
as well as two unseen buttons and 12 unseen distractors. We
visualize the training and test objects used in Figure 4.

We evaluate each model on several different scenarios
(e.g., different objects and distractors) for each of the tasks,
by running the same scenario for 5 different rollouts.

We collect a dataset of 26,866 trajectories, where the
robot is teleoperated using a Meta Oculus Quest 2 VR
headset. Each trajectory is labeled with a templated language
instruction. The two grasping tasks (tabletop and shopping
bag) feature visual, tactile, and action data, while the button
pressing tasks also includes sound. Visual observations are
recorded at a resolution of 640x480, while DIGIT images
at a resolution of 320x240. We follow previous work and
perform background subtraction on the tactile images to
further emphasize the membrane deformation and reduce
systematic differences across DIGIT instances [2]. The audio
observations comprise 1s of the most recent microphone
samples, recorded at a frequency of 44,100Hz. We visualize
our robot sensory setup in Figure 3.

B. Evaluation Tasks

We design a challenging suite of tasks, which focuses
on testing the policies’ ability to reason jointly over vision,
sound, and touch in a zero-shot setting.

Tabletop Grasping. We set up a simple tabletop grasping
scenario, where multiple objects are placed on a tray and
the task is to grasp the right object as prompted via a text
instruction (e.g., pick the carrot).

Shopping Bag. This environment presents a more com-
plex grasping scenario, where objects are placed inside a
paper bag. This scenario generally features occlusions to
third-person view camera, as well as results in poor lighting
conditions for the wrist camera as soon as the gripper enters
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Fig. 5: FuSe performance on evaluation tasks compared against baselines. Our approach outperforms baselines trained from scratch or finetuned with vision
only, especially on the shopping bag task, which presents partially observable visual scenarios. Lighter shades of color represent intermediate task success,
i.e., object touched but not fully grasped.

the bag. Thus, this represents an environment with partially-
observable visual scenarios.

Button Pressing. In this environment, we leverage the
sound modality, featuring six sound-making buttons, each
playing different sounds upon pressure. The goal is to press
the right button depending on the prompt, which can present
either visual- or audio-related commands (e.g., “press the
red button”, “press the button that plays piano”, etc.). We
also devise two compositional tasks in this setting, where
the objective is either i) to grasp objects that share visual
characteristics with one of the buttons (e.g., “grab the object
that has the same color as the button that plays piano”), or
ii) to press among the training buttons the one that plays the
same sound as an unseen button (e.g., “press the button that
plays the same sound as the blue button”).

C. Finetuning Performance

Here, we investigate the benefits of finetuning the Octo
generalist policy, pre-trained on the large OXE robotics
dataset [9], on our multimodal dataset. First, we are inter-
ested on whether our model performs better than the same
architecture trained from scratch on a small dataset as ours.
The results in Figure 5 show how our approach largely sur-
passes training Octo from scratch on our multimodal dataset
without our finetuning recipe, which is challenging due to the
limited size of the dataset. In contrast, our approach leverages
the knowledge acquired during pretraining and can adapt
to the new tasks and modalities with a smaller amount of
additional data. Finally, we also compare against a ResNet26
baseline, where language instructions are fed through FiLM
conditioning [49] as done in [50]. The smaller ResNet26
performs slightly better than training Octo from scratch, but
still underperforms our model on all three tasks.

To validate the effect of the new modalities on finetuning
performance, we compare with a recipe that finetunes Octo
only using the available pre-trained modalities, i.e., vision
and action. The results in Figure 5 show how this baseline
is competitive on the simpler tasks (tabletop and button
pressing), but it is considerably inferior to our model on the
bag task, where visual occlusions make visual features less
discriminative when the gripper enters the shopping bag.

D. Multimodal Prompting

In addition to improving finetuning performance, our train-
ing recipe provides the model with additional multimodal

capabilities, such as the possibility to provide a multimodal
prompt that can successfully discriminate objects based not
only on visual features but also based on other modalities
such as touch or sound. The evaluation prompts contain
several instances where the task is to grab an object with
an ambiguous description for one modality, but unique for
another (e.g., “grab the round object that feels squishy”,
where the scene presents both a foam ball and a crumpled
paper ball). The results are shown in Table I for the grasping
tasks, on scenarios that present objects sharing the same
visual and tactile features, respectively. This experiment
demonstrates that our policy can incorporate multimodal
instructions to improve over ambiguous descriptions.

E. Compositional Capabilities

Finally, we showcase compositional capabilities of our
model with two different compositional tasks in the button
pressing environment:

• In a simpler task, we prompt the model to grab an object
that has the same color as the training button the plays
a certain sound (e.g., “grab the object with the same
color as the button that plays piano”).

• In a multi-step task, we exploit the generative head to
connect between different subtasks. First, we prompt the
model to press a button not seen at training time, using
only visual instructions (e.g., “press the blue button”).
Then, we feed the resulting sound to the generative
head, which will generate the instruction related to the
corresponding audio (e.g., “press the button that plays

Visual Visual, Tactile
Reach Grasp Reach Grasp

Tabletop 0.43 0.43 0.5 0.43
Bag 0.3 0.25 0.55 0.3

Average 0.37 0.34 0.53 0.37

(a) Vision-ambiguous objects

Tactile Visual, Tactile
Reach Grasp Reach Grasp

Tabletop 0.4 0.4 0.4 0.4
Bag 0.35 0.3 0.5 0.3

Average 0.38 0.35 0.45 0.35

(b) Touch-ambiguous objects

TABLE I: Multimodal prompting results obtained with the FuSe policy
on scenarios that present objects sharing the same visual (a) or tactile (b)
features. Our policy incorporate multimodal instructions and improves over
ambiguous descriptions.
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Fig. 6: Results on the compositional tasks devised in the button pressing
environment. On the left, the instructions are of the type “pick the object
that has the same color as the button that play piano”. On the right, the
whole multi-step task is represented by an instruction like “press the train
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piano”). Finally, we prompt the model with the audio
instruction in the training environment, where the model
has already associated the visual cues of the button to
the corresponding sound, and will execute a trajectory
that ends up pressing the button that plays the same
sound as the button pressed in the first subtask.

We report quantitative results in Figure 6, showing that
even on the simple compositional task, FuSe outperforms all
baselines, exploiting its multimodal reasoning capabilities.
For the multi-step task, we compare with Octo trained
from scratch on all available sensors and with the same
auxiliary losses. Once again, FuSe outperforms the baseline,
particularly on the full task completion. In fact, the model
trained from scratch shows poor language grounding and
does not succeed in fulfilling the audio-based instruction.

F. Auxiliary Losses Ablation

In this section, we ablate the different FuSe auxiliary
losses in the shopping bag task, which features partially
observable visual scenarios. Figure 7 shows that both losses
are key to fully exploit the heterogeneous feedback available
on the robot, with the performance particularly deteriorating
for the baselines on test objects.

G. Vision-Language-Action Model Results

We also investigate the effectiveness of FuSe to finetune
alternative generalist policies based on off-the-shelf vision-
language-action (VLA) models. Instead of Octo, we finetune
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Fig. 7: We study the effect of the proposed losses in an ablation experiment
in the shopping bag environment. Our model that includes both contrastive
and language generative losses outperforms models trained with only one
of the two auxiliary losses or neither.
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Fig. 8: Performance of a PaliGemma FuSe 3B parameter VLA, trained on
our multimodal dataset, on unseen test objects. Our policy achieves robust
performance on the grasping tasks, showcasing the applicability of FuSe to
widely different generalist policies.

a 3B parameter vision-language model to get FuSe-VLA, a
VLA model capable of producing both robot actions and
language grounding. We use the PaliGemma [27] VLM as
the backbone, as it is able to easily incorporate a flexible
set of observations modalities (similar to Octo, but unlike
other VLA models like OpenVLA [5]). Such models are also
able to incorporate FuSe’s generative language modeling loss
directly rather than requiring an additional language model
head, unifying the implementation of action prediction and
language-based feature learning. We first pre-train on the
Bridge dataset [11], and finetune on our dataset with all
sensor modalities. We show results for the FuSe-VLA on
unseen test objects in Figure 8. These preliminary results
demonstrate that FuSe shows promise to transfer across dif-
ferent robot policy architectures. We note that the difference
in performance on the button pressing task may be ascribed
to the Bridge dataset being only a subset of OXE, which
instead contains button pressing tasks among its trajectories.

To our knowledge, FuSe-VLA is the first open-source
VLA finetuned on heterogeneous sensory inputs.

V. CONCLUSIONS
In this paper, we introduced FuSe, an approach to finetune

large, pre-trained robot policies on heterogeneous robot
sensor modalities, such as touch or audio, for which large
datasets are not readily available. By leveraging natural
language as a common cross-modal grounding during train-
ing, FuSe enables performing challenging tasks that require
reasoning jointly over modalities such as vision, touch,
and sound in a zero-shot setting. FuSe enables capabilities
such as multimodal prompting, compositional cross-modal
prompting, and descriptions of objects it interacts with. We
also demonstrate the effectiveness of our recipe (multimodal
finetuning and feature learning via cross-modal language
grounding) is applicable to widely different generalist poli-
cies, including a transformer-based Octo model or a policy
finetuned from a generative VLM base model pre-trained on
internet-scale data as well as unimodal robot data.

A limitation of our approach is that training a policy with
additional modalities requires increasing training resources,
which currently limits our observation history to 0.4s. In-
creasing training efficiency would enable training with longer
context length, potentially leading to improved reasoning
about sparse signals such as tactile data, and will be subject
of future work.
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